国产精品一区二区熟女不卡,国产中文字幕视频,久久国产精品_国产精品,久久免费午夜福利院

      1. <object id="hdef9"></object>

        
        

          淺談如何學(xué)好高中立體幾何

          作者: 文/ 李肖月 來(lái)源:科技信息報(bào)今日文教周刊2013年12月2日A6版 更新:2013-12-03 17:17
                 一、入門(mén) 
                 1、重視基礎(chǔ)知識(shí)的學(xué)習(xí)。立體幾何的基礎(chǔ)知識(shí)包括所有的基本概念、公理、定理和方法。盡管它們所概括的事物及其關(guān)系普遍地存在于實(shí)際生活中,但由于數(shù)學(xué)化的概念、公理、定理太抽象,與實(shí)際的感受有很大的差距,所以在開(kāi)始學(xué)習(xí)階段有一定困難,克服困難的方法是遵循教學(xué)規(guī)律,使立體幾何知識(shí)盡量與學(xué)生的認(rèn)知過(guò)程靠近,借助實(shí)物,注重直觀思維的作用,并逐步到分析思維,從而達(dá)到對(duì)基礎(chǔ)知識(shí)本質(zhì)的認(rèn)識(shí)。
                 2、從二維到三維的轉(zhuǎn)變。從二維平面到三維空間,從平面幾何到立體幾何,不論是圖形還是概念的拓展、變化,對(duì)學(xué)生來(lái)說(shuō)都是個(gè)難點(diǎn)。通過(guò)多畫(huà)直觀圖以提高學(xué)生的空間想象能力,進(jìn)而使學(xué)生思維觀念由二維到三維,也可以利用平面幾何與立體幾何的對(duì)比,使學(xué)生思維觀念由二維到三維。
                 3、空間想象能力與邏輯思維能力的培養(yǎng)。空間想象能力包括對(duì)事物的形狀、結(jié)構(gòu)、大小、位置關(guān)系的想象力。認(rèn)識(shí)圖形性質(zhì)的能力和畫(huà)圖能力不單單是空間想象力。它和一般能力,其它方面的幾何能力都有關(guān)系,所以培養(yǎng)學(xué)生空間想象力必須要學(xué)好立體幾何的基本知識(shí),也要考慮其它方面的因素,互相配合,才能有好的效果。培養(yǎng)良好的邏輯推理能力,必須學(xué)好基本概念、公理和定理,不僅要理解它們,還要熟練地記憶它們,掌握它們之間的聯(lián)系,同時(shí)對(duì)基礎(chǔ)題目也要認(rèn)真地書(shū)寫(xiě)證明過(guò)程。另外,對(duì)定理必須掌握其證明的邏輯推理過(guò)程以及滲透的數(shù)學(xué)思想方法。
                 二、“轉(zhuǎn)化”思想的應(yīng)用,注重強(qiáng)化學(xué)生思維
                 數(shù)學(xué)中的“轉(zhuǎn)化”思想是指把待解決的數(shù)學(xué)問(wèn)題,通過(guò)某種轉(zhuǎn)化,變成一類(lèi)已經(jīng)解決或比較容易解決的問(wèn)題,從而使原問(wèn)題得以解決的一種數(shù)學(xué)思想。解立體幾何問(wèn)題,要充分運(yùn)用“轉(zhuǎn)化”這種數(shù)學(xué)思想,從而使問(wèn)題由繁變簡(jiǎn),由難變易,例如:
                 1、點(diǎn)、線、面位置關(guān)系的相互轉(zhuǎn)化
          線線、線面、面面平行與垂直關(guān)系既相互依存,又在一定條件下能相互轉(zhuǎn)化。線線平行(或垂直)、線面平行(或垂直)、面面平行(或垂直)的轉(zhuǎn)化關(guān)系在平行或垂直的判定和性質(zhì)定理中得到充分體現(xiàn),平行或垂直關(guān)系的證明,大都可以利用上述互相轉(zhuǎn)化關(guān)系來(lái)證明。數(shù)學(xué)中滲透轉(zhuǎn)化思想,可以加深學(xué)生對(duì)點(diǎn)、線、面位置關(guān)系的理解,提高教學(xué)效率。
                 2、體積問(wèn)題中的轉(zhuǎn)化
          在研究簡(jiǎn)單幾何體體積問(wèn)題的過(guò)程中,將一般主體體積問(wèn)題轉(zhuǎn)化為長(zhǎng)方體體積問(wèn)題,一般椎體體積問(wèn)題轉(zhuǎn)化為三棱錐體積問(wèn)題,從而轉(zhuǎn)化為柱體和椎體體積公式等。三棱錐體積公式推導(dǎo)過(guò)程中,“補(bǔ)法”和“割法”的先后應(yīng)用,如臺(tái)體的體積(即補(bǔ)臺(tái)成錐)所展示的割補(bǔ)轉(zhuǎn)化;利用四面體、平行六面體等幾何體體積的自等性,以體積為媒介溝通有關(guān)元素間的聯(lián)系,從而使問(wèn)題獲解,等體積轉(zhuǎn)化等,都是轉(zhuǎn)化思想在體積問(wèn)題中的體現(xiàn)。
                 3、空間幾何問(wèn)題向平面幾何問(wèn)題轉(zhuǎn)化
                 將空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題是學(xué)習(xí)立體幾何最重要的解題方法之一。如線面垂直的判定定理轉(zhuǎn)為三角形全等的平面幾何問(wèn)題;旋轉(zhuǎn)體的有關(guān)問(wèn)題轉(zhuǎn)為關(guān)于軸截面的平面幾何問(wèn)題;三種角(線線角、線面角、二面角)和四種距離(線線距、點(diǎn)面距、線面距、面面距)從定義到具體的計(jì)算也體現(xiàn)了空間到平面的轉(zhuǎn)化。
                 三、總結(jié)規(guī)律,規(guī)范解題
                 高中立體幾何中定義定理很多,因而解題方法很多,要善于總結(jié)。例如:證明兩直線互相平行的方法歸納起來(lái)就有空間兩直線平行的定義、初中平面幾何的有關(guān)方法或結(jié)論,如:同位角相等,兩直線平行等、平行公理、線面平行的性質(zhì)定理、線面垂直的性質(zhì)定理、面面平行的性質(zhì)定理等。
                 在立體幾何解題過(guò)程中,常有明顯的規(guī)律性。例如:求角先找平面角、解三角形求角,正余弦定理、三角定義常用,若余弦值為負(fù),異面角、線面角取銳角。求距離可歸納為:距離多是垂線段,放到三角形中去計(jì)算,經(jīng)常用正余弦定理、勾股定理,若是垂線難作出,用等積等高來(lái)轉(zhuǎn)化。在學(xué)習(xí)過(guò)程中,要不斷總結(jié),才能不斷提高。
                 在平常學(xué)習(xí)過(guò)程中,要注重規(guī)范訓(xùn)練,高考大題需要寫(xiě)出規(guī)范的答題步驟,否則會(huì)因此失分。不少同學(xué)對(duì)作、證、求三個(gè)環(huán)節(jié)交待不清,表達(dá)不夠規(guī)范、嚴(yán)謹(jǐn),因果關(guān)系不充分,符號(hào)語(yǔ)言運(yùn)用不正確等。因此我們要在平時(shí)注重規(guī)范訓(xùn)練,參照課本例題作答。在高考中,在“按步給分”的原則下,規(guī)范書(shū)寫(xiě)過(guò)程尤為重要。
                 四、典型結(jié)論的應(yīng)用 
                 在平時(shí)的學(xué)習(xí)過(guò)程中,對(duì)于證明過(guò)的一些典型命題,可以把它們當(dāng)做結(jié)論記下來(lái)。在做一些選擇題或填空題時(shí),利用這些結(jié)論可以很快地求出一些運(yùn)算起來(lái)很繁瑣的題目。對(duì)于解答題而言,雖然不能直接應(yīng)用這些結(jié)論,但有時(shí)也會(huì)幫助我們打開(kāi)思路,進(jìn)而求解出答案。
                 總之,在學(xué)習(xí)立體幾何中,我們要強(qiáng)調(diào)讓學(xué)生做到以上幾點(diǎn),進(jìn)一步提高他們的學(xué)習(xí)興趣,加深他們對(duì)數(shù)學(xué)的理解,激發(fā)出潛在的創(chuàng)造力,讓學(xué)生在不斷探索和創(chuàng)造的氛圍中發(fā)展解決問(wèn)題的能力,體會(huì)數(shù)學(xué)的價(jià)值。
                                                                    (作者單位:山西省臨縣一中)
          手機(jī)版
          http://e.zhwjw.net/
            網(wǎng)友關(guān)注
          • 課題研究
          • 文教視點(diǎn)
          • 新聞資訊

          Copyright (C) 2009-2016 中華文教網(wǎng) weimi588.com All Rights Reserved 版權(quán)所有 京ICP備10012388號(hào)

          商務(wù)聯(lián)系、網(wǎng)站內(nèi)容、合作建議:18610236845 zdkw2005@163.com

          QQ客服: 點(diǎn)擊這里給我發(fā)消息 | 點(diǎn)擊這里給我發(fā)消息