長(zhǎng)期以來(lái),提高小學(xué)生的課堂教學(xué)效率,在一定的時(shí)間使學(xué)生熟練掌握解題技巧,是老師們苦心鉆研的課題,經(jīng)過(guò)多年的教學(xué)經(jīng)驗(yàn),我對(duì)提高小學(xué)數(shù)學(xué)課堂效率主要有以下幾點(diǎn)見(jiàn)解。
一、一例多說(shuō),養(yǎng)成解題的思維習(xí)慣
語(yǔ)言和思維密切相關(guān),語(yǔ)言是思維的外殼,也是思維的工具。語(yǔ)言可以促進(jìn)思維的發(fā)展,反過(guò)來(lái),良好的邏輯思維,又會(huì)引導(dǎo)出準(zhǔn)確、流暢而又周密的語(yǔ)言。在教學(xué)實(shí)踐中,不少老師只強(qiáng)調(diào)“怎樣解題”,而忽視了“如何說(shuō)題(說(shuō)題意、說(shuō)思路、說(shuō)解法、說(shuō)檢驗(yàn)等)”。由于缺少對(duì)解題的思維習(xí)慣、思維品質(zhì)的培養(yǎng),學(xué)生的解題能力,只囿于題海戰(zhàn)術(shù)、死記硬背的機(jī)械記憶中,這與當(dāng)前的素質(zhì)教育格格不入。
1.順逆說(shuō)。每解答一道應(yīng)用題時(shí),不必急于去求答案,而要讓學(xué)生分別進(jìn)行順?biāo)伎己湍嫠伎,把解題思路及計(jì)劃說(shuō)出來(lái)。再把說(shuō)出的意義與原題對(duì)照,看看是否一致,如不一致,則要重新分析,認(rèn)真檢查,直到說(shuō)出的意義與原題一致為止。
2 轉(zhuǎn)換說(shuō)。對(duì)于題中某一個(gè)條件或問(wèn)題,要引導(dǎo)學(xué)生善于運(yùn)用轉(zhuǎn)換的思想,說(shuō)成與其內(nèi)容等價(jià)的另一種表達(dá)形式,使學(xué)生加深理解,從而豐富解題方法,提高解題能力。這樣,學(xué)生解題思路就會(huì)開(kāi)闊,方法就會(huì)靈活多樣,從而化難為易。
3 辯論說(shuō)。鼓勵(lì)學(xué)生有理有據(jù)的自由爭(zhēng)辯,有利于培養(yǎng)學(xué)生獨(dú)立思考和勇于發(fā)表不同見(jiàn)解的思維品質(zhì),尋找到獨(dú)特的解題方法。有一次,一位老師教學(xué)解答圓面積一題時(shí),老師問(wèn)學(xué)生:“計(jì)算圓面積要知道什么條件才能進(jìn)行計(jì)算?”多數(shù)學(xué)生回答“必須知道半徑,才能求出圓面積!钡幸粋(gè)學(xué)生舉手表示不同意,認(rèn)為“知道周長(zhǎng)或直徑,同樣可以計(jì)算圓面積!睂(duì)這個(gè)學(xué)生的回答,老師一方面作了肯定,另一方面要他和持不同意見(jiàn)的同學(xué)進(jìn)行辯論。這樣,雙方經(jīng)過(guò)幾輪辯論后,使這位學(xué)生認(rèn)識(shí)到“已知周長(zhǎng)或直徑,最終還是要先求出半徑”的道理。另外,也使大部分同學(xué)明白了“不光只有知道半徑,才能計(jì)算圓面積”的道理。
二、多向探索,培養(yǎng)解題的靈活性
求異思維是一種創(chuàng)造性思維。它要求學(xué)生憑借自己的知識(shí)水平能力,對(duì)某一問(wèn)題
從不同的角度,不同的方位去思考,創(chuàng)造性地解決問(wèn)題。而小學(xué)生的思維是以具體形象思維為主,容易產(chǎn)生消極的思維定勢(shì),造成一些機(jī)械思維模式,干擾解題的準(zhǔn)確性和靈活性。有的學(xué)生常常將題中的兩個(gè)數(shù)據(jù)隨意連接,而忽視其邏輯意義。為了排除學(xué)生這種消極思維定勢(shì)的干擾,在解題中,要努力創(chuàng)造條件,引導(dǎo)學(xué)生從各個(gè)角度去分析思考問(wèn)題,發(fā)展學(xué)生的求異思維,使其創(chuàng)造性地解決問(wèn)題。通常運(yùn)用的方法有“一題多問(wèn)”、和“一題多變”等。
1 一題多問(wèn)。同一道題,同樣的條件,從不同的角度出發(fā),可以提出不同的問(wèn)題。這樣,可以起到“以一當(dāng)十”的教學(xué)效果。像同一道題,老師還可以從分析上多提問(wèn),從解法上多提問(wèn),從檢驗(yàn)上多提問(wèn),進(jìn)行多問(wèn)啟思訓(xùn)練,培養(yǎng)學(xué)習(xí)思維的靈活性。
2.一題多變。小學(xué)生解題時(shí),往往受解題動(dòng)機(jī)的影響,因局部感知而干擾整體的認(rèn)識(shí)。例如:“某商廈共有6層,每?jī)蓪娱g的板梯長(zhǎng)5米,從1樓到6樓共要走多少米?”往往由于“每?jī)蓪樱得住焙汀埃秾印迸c學(xué)生的解題動(dòng)機(jī)發(fā)生共鳴,忽視了“6層只有5段間距”這一特點(diǎn),而容易得出“5×6”的錯(cuò)解。要消除類(lèi)似的干擾,就必須進(jìn)行一些一題多變的訓(xùn)練。
通常,教學(xué)中的變條件、變問(wèn)題、條件和問(wèn)題的互換等,都是一題多變的好形式,但是,變題訓(xùn)練要掌握一個(gè)原則,就是要在學(xué)生較牢固的掌握法則、公式的基礎(chǔ)上,進(jìn)行變題型練。否則,將淡化思維定勢(shì)的積極作用,不利于學(xué)生牢固地掌握知識(shí)。
在小學(xué)數(shù)學(xué)題型中,歸納起來(lái),不外乎是概念題、計(jì)算題、文字題、應(yīng)用題和圖式題等幾大類(lèi)。像計(jì)算式題、文字題、應(yīng)用題、圖式題大都是實(shí)際生活中的例子,在教學(xué)中,要善于把各種描述的形式,聯(lián)系起來(lái),進(jìn)行訓(xùn)練,達(dá)到由此及彼,由里及外,融會(huì)貫通和舉一反三的效果。
(作者單位:貴州省六盤(pán)水市盤(pán)縣斷江鎮(zhèn)第三小學(xué))